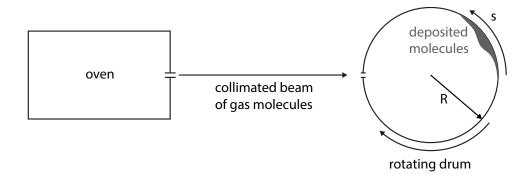
Dynamics and Kinetics. Exercise 7

Problem 1

Starting from the Maxwell-Boltzmann distribution of velocity magnitudes,

$$f_{\rm MB}(v)dv = \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{mv^2}{2k_B T}\right) 4\pi v^2 dv,$$

find the expressions for the root mean square velocity and for the most probable velocity.


Problem 2

Starting from the Maxwell-Boltzmann distribution of velocity magnitudes (see Problem 1), derive the Maxwell-Boltzmann distribution of kinetic energies,

$$f(\varepsilon)d\varepsilon = 2\pi \left(\pi k_B T\right)^{-3/2} \varepsilon^{1/2} e^{-\varepsilon/k_B T} d\varepsilon.$$

Problem 3

The figure below illustrates an experiment for measuring the Maxwell-Boltzmann distribution.

An oven at temperature T releases a narrow beam of gas molecules of mass m through a hole. The molecules strike a drum of radius R that rotates with frequency ν . The drum has a small opening through which gas molecules can enter into the drum when the opening passes through the beam of gas molecules. Because of the fast rotation of the drum, only a short pulse of gas molecules enters. Once these molecules reach the opposite wall of the drum, they stick to it.

a) Show that the flux of molecules of velocity u contained in a pulse that enters the drum is proportional to

$$u^3 e^{-\frac{mu^2}{2k_BT}} du$$

b) The molecules are deposited on the wall of the drum at a distance s from the point opposite the opening in the drum as indicated in the figure. Derive the distribution I(s)ds of the deposited molecules. It is not necessary to normalize this distribution.

Problem 4

Derive the speed distribution F(u)du of a two-dimensional ideal gas.

Hint: Start from a one-dimensional velocity distribution to derive a two-dimensional distribution of the velocities, and then do a suitable coordinate transformation.